Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Words are not Equal: Graded Weighting Model for building Composite Document Vectors (1512.03549v1)

Published 11 Dec 2015 in cs.CL, cs.LG, and cs.NE

Abstract: Despite the success of distributional semantics, composing phrases from word vectors remains an important challenge. Several methods have been tried for benchmark tasks such as sentiment classification, including word vector averaging, matrix-vector approaches based on parsing, and on-the-fly learning of paragraph vectors. Most models usually omit stop words from the composition. Instead of such an yes-no decision, we consider several graded schemes where words are weighted according to their discriminatory relevance with respect to its use in the document (e.g., idf). Some of these methods (particularly tf-idf) are seen to result in a significant improvement in performance over prior state of the art. Further, combining such approaches into an ensemble based on alternate classifiers such as the RNN model, results in an 1.6% performance improvement on the standard IMDB movie review dataset, and a 7.01% improvement on Amazon product reviews. Since these are language free models and can be obtained in an unsupervised manner, they are of interest also for under-resourced languages such as Hindi as well and many more languages. We demonstrate the language free aspects by showing a gain of 12% for two review datasets over earlier results, and also release a new larger dataset for future testing (Singh,2015).

Citations (15)

Summary

We haven't generated a summary for this paper yet.