Papers
Topics
Authors
Recent
2000 character limit reached

Integral Concurrent Learning: Adaptive Control with Parameter Convergence without PE or State Derivatives

Published 10 Dec 2015 in cs.SY | (1512.03464v1)

Abstract: Concurrent learning is a recently developed adaptive update scheme that can be used to guarantee parameter convergence without requiring persistent excitation. However, this technique requires knowledge of state derivatives, which are usually not directly sensed and therefore must be estimated. A novel integral concurrent learning method is developed in this paper that removes the need to estimate state derivatives while maintaining parameter convergence properties. A Monte Carlo simulation illustrates improved robustness to noise compared to the traditional derivative formulation.

Citations (123)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.