Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shift tail equivalence and an unbounded representative of the Cuntz-Pimsner extension (1512.03455v2)

Published 10 Dec 2015 in math.KT, math.DS, math.OA, and math.QA

Abstract: We show how the fine structure in shift-tail equivalence, appearing in the noncommutative geometry of Cuntz-Krieger algebras developed by the first two authors, has an analogue in a wide range of other Cuntz-Pimsner algebras. To illustrate this structure, and where it appears, we produce an unbounded representative of the defining extension of the Cuntz-Pimsner algebra constructed from a finitely generated projective bi-Hilbertian module, extending work by the third author with Robertson and Sims. As an application, our construction yields new spectral triples for Cuntz- and Cuntz-Krieger algebras and for Cuntz-Pimsner algebras associated to vector bundles twisted by equicontinuous $*$-automorphisms.

Summary

We haven't generated a summary for this paper yet.