Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complete C*-categories and a topos theoretic Green-Julg theorem (1512.03290v1)

Published 10 Dec 2015 in math.CT and math.OA

Abstract: We investigate what would be a correct definition of categorical completeness for C*-categories and propose several variants of such a definition that make the category of Hilbert modules over a C*-algebra a free (co)completion. We extend results about generators and comparison theory known for W*-categories with direct sums and splitting of symmetric projections to our "complete C*-categories" and we give an abstract characterization of categories of Hilbert modules over a C*-algebra or a C*-category as "complete C*-category having enough absolutely compact morphisms (and a generator)". We then apply this to study the category of Hilbert spaces over a topos showing that this is an example of a complete C*-category. We prove a topos theoretic Green-Julg theorem: The category of Hilbert spaces over a topos which is locally decidable, separated and whose localic reflection is locally compact and completely regular is a category of Hilbert modules over a C*-algebras attached to the topos. All the results in this paper are proved constructively and hence can be applied themselves internally to a topos. Moreover we give constructive proof of some known classical results about C*-algebras and Hilbert modules.

Summary

We haven't generated a summary for this paper yet.