Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-Gaussian directions of random vectors (1512.03282v2)

Published 10 Dec 2015 in math.MG, math.FA, and math.PR

Abstract: We establish the following universality property in high dimensions: Let $X$ be a random vector with density in $\mathbb{R}n$. The density function can be arbitrary. We show that there exists a fixed unit vector $\theta \in \mathbb{R}n$ such that the random variable $Y = \langle X, \theta \rangle$ satisfies $$ \min \left { \mathbb{P}( Y \geq t M ), \mathbb{P}(Y \leq -tM) \right } \geq c e{-C t2} \qquad \qquad \text{for all} \ 0 \leq t \leq \tilde{c} \sqrt{n}, $$ where $M > 0$ is any median of $|Y|$, i.e., $\min { \mathbb{P}( |Y| \geq M), \mathbb{P}( |Y| \leq M ) } \geq 1/2$. Here, $c, \tilde{c}, C > 0$ are universal constants. The dependence on the dimension $n$ is optimal, up to universal constants, improving upon our previous work.

Summary

We haven't generated a summary for this paper yet.