On decompositions of quadrinomials and related Diophantine equations (1512.02817v1)
Abstract: Let $A,B,C,D$ be rational numbers such that $ABC \neq 0$, and let $n_1>n_2>n_3>0$ be positive integers. We solve the equation $$ Ax{n_1}+Bx{n_2}+Cx{n_3}+D = f(g(x)),$$ in $f,g \in \mathbb{Q}[x]$. In sequel we use Bilu-Tichy method to prove finitness of integral solutions of the equations $$ Ax{n_1}+Bx{n_2}+Cx{n_3}+D = Ey{m_1}+Fy{m_2}+Gy{m_3}+H, $$ where $A,B,C,D,E,F,G,H$ are rational numbers $ABCEFG \neq 0$ and $n_1>n_2>n_3>0$, $m_1>m_2>m_3>0$, $\gcd(n_1,n_2,n_3) = \gcd(m_1,m_2,m_3)=1$ and $n_1,m_1 \geq 9$. And the equation $$ A_1x{n_1}+A_2x{n_2}+\ldots+A_l x{n_l} + A_{l+1} = Ey{m_1}+Fy{m_2}+Gy{m_3}, $$ where $l \geq 4$ is fixed integer, $A_1,\ldots,A_{l+1},E,F,G$ are non-zero rational numbers, except for possibly $A_{l+1}$, $n_1>n_2>\ldots > n_l>0$, $m_1>m_2>m_3>0$ are positive integers such that $\gcd(n_1,n_2, \ldots n_l) = \gcd(m_1,m_2,m_3)=1$, and $n_1 \geq 4$, $m_1 \geq 2l(l-1)$.