2000 character limit reached
Logics of Finite Hankel Rank (1512.02507v1)
Published 8 Dec 2015 in math.LO
Abstract: We discuss the Feferman-Vaught Theorem in the setting of abstract model theory for finite structures. We look at sum-like and product-like binary operations on finite structures and their Hankel matrices. We show the connection between Hankel matrices and the Feferman-Vaught Theorem. The largest logic known to satisfy a Feferman-Vaught Theorem for product-like operations is CFOL, first order logic with modular counting quantifiers. For sum-like operations it is CMSOL, the corresponding monadic second order logic. We discuss whether there are maximal logics satisfying Feferman-Vaught Theorems for finite structures.