2000 character limit reached
$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$ (1512.02332v2)
Published 8 Dec 2015 in cs.IT and math.IT
Abstract: Let $\mathbb{F}p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2uk)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u2\mathbb{F}_p+u{3}\mathbb{F}{p}+\cdots+u{k}\mathbb{F}_{p}$ where $u{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.