Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ballistic Transport and Absolute Continuity of One-Frequency Schrödinger Operators (1512.02195v2)

Published 7 Dec 2015 in math.DS and math.SP

Abstract: For the solution $u(t)$ to the discrete Schr\"odinger equation $${\rm i}\frac{d}{dt}u_n(t)=-(u_{n+1}(t)+u_{n-1}(t))+V(\theta + n\alpha)u_n(t), \quad n\in\Z,$$ with $\alpha\in\R\setminus\Q$ and $V\in C\omega(\T,\R)$, we consider the growth rate with $t$ of its diffusion norm $\langle u(t)\rangle_{p}:=\left(\sum_{n\in\Z}(n{p}+1) |u_n(t)|2\right)\frac12$, and the (non-averaged) transport exponents $$\beta_u{+}(p) := \limsup_{t \to \infty} \frac{2\log \langle u(t)\rangle_{p}}{p\log t}, \quad \beta_u{-}(p):= \liminf_{t \to \infty} \frac{2\log \langle u(t)\rangle_{p}}{p\log t}.$$ We will show that, if the corresponding Schr\"odinger operator has purely absolutely continuous spectrum, then $\beta_{u}{\pm}(p)=1$, provided that $u(0)$ is well localized.

Summary

We haven't generated a summary for this paper yet.