Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Prior Knowledge for Quantifying and Reducing Model-Form Uncertainty in RANS Simulations (1512.01750v1)

Published 6 Dec 2015 in physics.flu-dyn

Abstract: Simulations based on Reynolds-Averaged Navier--Stokes (RANS) models have been used to support high-consequence decisions related to turbulent flows. Apart from the deterministic model predictions, the decision makers are often equally concerned about the predictions confidence. Among the uncertainties in RANS simulations, the model-form uncertainty is an important or even a dominant source. Therefore, quantifying and reducing the model-form uncertainties in RANS simulations are of critical importance to make risk-informed decisions. Researchers in statistics communities have made efforts on this issue by considering numerical models as black boxes. However, this physics-neutral approach is not a most efficient use of data, and is not practical for most engineering problems. Recently, we proposed an open-box, Bayesian framework for quantifying and reducing model-form uncertainties in RANS simulations by incorporating observation data and physics-prior knowledge. It can incorporate the information from the vast body of existing empirical knowledge with mathematical rigor, which enables a more efficient usage of data. In this work, we examine the merits of incorporating various types of prior knowledge in the uncertainties quantification and reduction in RANS simulations. The result demonstrates that informative physics-based prior plays an important role in improving the quantification of model-form uncertainties, particularly when the observation data are limited. Moreover, it suggests that the proposed Bayesian framework is an effective way to incorporate empirical knowledge from various sources.

Summary

We haven't generated a summary for this paper yet.