Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Data Augmentation Algorithm for Bayesian Multivariate Linear Regression with Non-Gaussian Errors (1512.01734v1)

Published 6 Dec 2015 in math.ST and stat.TH

Abstract: Let $\pi$ denote the intractable posterior density that results when the likelihood from a multivariate linear regression model with errors from a scale mixture of normals is combined with the standard non-informative prior. There is a simple data augmentation algorithm (based on latent data from the mixing density) that can be used to explore $\pi$. Hobert et al. (2015) [arXiv:1506.03113v1] recently performed a convergence rate analysis of the Markov chain underlying this MCMC algorithm in the special case where the regression model is univariate. These authors provide simple sufficient conditions (on the mixing density) for geometric ergodicity of the Markov chain. In this note, we extend Hobert et al.'s (2015) result to the multivariate case.

Summary

We haven't generated a summary for this paper yet.