Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities (1512.01526v2)

Published 4 Dec 2015 in math.AP

Abstract: We consider the fourth order problem $\Delta{2}u=\lambda f(u)$ on a general bounded domain $\Omega$ in $R{n}$ with the Navier boundary condition $u=\Delta u=0$ on $\partial \Omega$. Here, $\lambda$ is a positive parameter and $ f:[0,a_{f}) \rightarrow \Bbb{R}{+} $ $ (0 < a{f} \leqslant \infty)$ is a smooth, increasing, convex nonlinearity such that $ f(0) > 0 $ and which blows up at $ a_{f} $. Let $$0<\tau_{-}:=\liminf_{t\rightarrow a_{f}} \frac{f(t)f"(t)}{f'(t){2}}\leq \tau_{+}:=\limsup_{t\rightarrow a_{f}} \frac{f(t)f"(t)}{f'(t){2}}<2.$$ We show that if $u_{m}$ is a sequence of semistable solutions correspond to $\lambda_{m}$ satisfy the stability inequality $$ \sqrt{\lambda_{m}}\int_{\Omega}\sqrt{f'(u_{m})}\phi{2}dx\leq \int_{\Omega}|\nabla\phi|{2}dx, ~~\text{for all}~\phi\in H{1}_{0}(\Omega),$$ then $\sup_{m} ||u_{m}||{L{\infty}(\Omega)}<a{f}$ for $n< \frac{4\alpha_{}(2-\tau_{+})+2\tau_{+}}{\tau_{+}}\max {1, \tau_{+}},$ where $\alpha{}$ is the largest root of the equation $$(2-\tau_{-}){2} \alpha{4}- 8(2-\tau_{+})\alpha{2}+4(4-3\tau_{+})\alpha-4(1-\tau_{+})=0.$$ In particular, if $\tau_{-}=\tau_{+}:=\tau$, then $\sup_{m} ||u_{m}||{L{\infty}(\Omega)}<a{f}$ for $n\leq12$ when $\tau\leq 1$, and for $n\leq7$ when $\tau\leq 1.57863$. These estimates lead to the regularity of the corresponding extremal solution $u{}(x)=\lim_{\lambda\uparrow\lambda{}}u_{\lambda}(x),$ where $\lambda*$ is the extremal parameter of the eigenvalue problem.

Summary

We haven't generated a summary for this paper yet.