Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Rank and Asymptotic Rank of Finite Dynamical Systems (1512.01448v2)

Published 4 Dec 2015 in math.CO, cs.DM, and math.DS

Abstract: A finite dynamical system is a system of multivariate functions over a finite alphabet used to model a network of interacting entities. The main feature of a finite dynamical system is its interaction graph, which indicates which local functions depend on which variables; the interaction graph is a qualitative representation of the interactions amongst entities on the network. The rank of a finite dynamical system is the cardinality of its image; the periodic rank is the number of its periodic points. In this paper, we determine the maximum rank and the maximum periodic rank of a finite dynamical system with a given interaction graph over any non-Boolean alphabet. We also obtain a similar result for Boolean finite dynamical systems (also known as Boolean networks) whose interaction graphs are contained in a given digraph. We then prove that the average rank is relatively close (as the size of the alphabet is large) to the maximum. The results mentioned above only deal with the parallel update schedule. We finally determine the maximum rank over all block-sequential update schedules and the supremum periodic rank over all complete update schedules.

Citations (1)

Summary

We haven't generated a summary for this paper yet.