Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neuron's Eye View: Inferring Features of Complex Stimuli from Neural Responses (1512.01408v2)

Published 4 Dec 2015 in stat.ML and q-bio.NC

Abstract: Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world --- contrast and luminance for vision, pitch and intensity for sound --- and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary \emph{a priori} choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the \emph{stimulus}, each of which has Markov (or semi-Markov) dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set.

Citations (2)

Summary

We haven't generated a summary for this paper yet.