2000 character limit reached
Global axisymmetric solutions of 3D inhomogeneous incompressible Navier-Stokes Systems with nonzero swirl (1512.01051v1)
Published 3 Dec 2015 in math.AP
Abstract: In this paper, we investigate the global well-posedness for the 3-D inhomogeneous incompressible Navier-Stokes system with the axisymmetric initial data. We prove the global well-posedness provided that $$|\frac{a_{0}}{r}|{\infty} \textrm{ and } |u{0}{\theta}|_{3} \textrm{ are sufficiently small}. $$ Furthermore, if $\mathbf{u}0\in L1$ and $ru\theta_0\in L1\cap L2$, we have \begin{equation*} |u{\theta}(t)|{2}{2}+\langle t\rangle |\nabla (u{\theta}\mathbf{e}{\theta})(t)|{2}{2}+t\langle t\rangle(|u_{t}{\theta}(t)|{2}{2}+|\Delta(u{\theta}\mathbf{e}{\theta})(t)|_{2}{2}) \leq C \langle t\rangle{-\frac{5}{2}},\ \forall\ t>0. \end{equation*}