Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Principle and Sampling of Signals Defined on Graphs (1512.00775v1)

Published 2 Dec 2015 in cs.IT, cs.DM, math.IT, and math.SP

Abstract: In many applications, from sensor to social networks, gene regulatory networks or big data, observations can be represented as a signal defined over the vertices of a graph. Building on the recently introduced Graph Fourier Transform, the first contribution of this paper is to provide an uncertainty principle for signals on graph. As a by-product of this theory, we show how to build a dictionary of maximally concentrated signals on vertex/frequency domains. Then, we establish a direct relation between uncertainty principle and sampling, which forms the basis for a sampling theorem of signals defined on graph. Based on this theory, we show that, besides sampling rate, the samples' location plays a key role in the performance of signal recovery algorithms. Hence, we suggest a few alternative sampling strategies and compare them with recently proposed methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.