Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the arithmetic of abelian varieties (1512.00773v2)

Published 2 Dec 2015 in math.NT and math.AG

Abstract: We prove some new results on the arithmetic of abelian varieties over function fields of one variable over finitely generated (infinite) fields. Among other things, we introduce certain new natural objects discrete Selmer groups' anddiscrete Shafarevich-Tate groups', and prove that they are finitely generated $\Bbb Z$-modules. Further, we prove that in the isotrivial case, the discrete Shafarevich-Tate group vanishes and the discrete Selmer group coincides with the Mordell-Weil group. One of the key ingredients to prove these results is a new specialisation theorem `a la N\'eron for first Galois cohomology groups, of the ($l$-adic) Tate module of abelian varieties which generalises N\'eron's specialisation theorem for rational points of abelian varieties.

Summary

We haven't generated a summary for this paper yet.