Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The rational torsion subgroups of Drinfeld modular Jacobians and Eisenstein pseudo-harmonic cochains (1512.00586v2)

Published 2 Dec 2015 in math.NT

Abstract: Let $\frak{n}$ be a square-free ideal of $\mathbb{F}_q[T]$. We study the rational torsion subgroup of the Jacobian variety $J_0(\frak{n})$ of the Drinfeld modular curve $X_0(\frak{n})$. We prove that for any prime number $\ell$ not dividing $q(q-1)$, the $\ell$-primary part of this group coincides with that of the cuspidal divisor class group. We further determine the structure of the $\ell$-primary part of the cuspidal divisor class group for any prime $\ell$ not dividing $q-1$.

Summary

We haven't generated a summary for this paper yet.