On The Boundedness of Bi-parameter Littlewood-Paley $g_λ^{*}$-function (1512.00569v2)
Abstract: Let $m,n\ge 1$ and $g_{\lambda_1,\lambda_2}*$ be the bi-parameter Littlewood-Paley $g_{\lambda}{*}$-function defined by $$ g_{\lambda_1,\lambda_2}*(f)(x)= \bigg(\iint_{\R{m+1}_{+}} \big(\frac{t_2}{t_2 + |x_2 - y_2|}\big){m \lambda_2} \iint_{\R{n+1}_{+}} \big(\frac{t_1}{t_1 + |x_1 - y_1|}\big){n \lambda_1}|\theta_{t_1,t_2} f(y_1,y_2)|2 \frac{dy_1 dt_1}{t_1{n+1}} \frac{dy_2 dt_2}{t_2{m+1}} \bigg){1/2}, \lambda_1>1,\quad \lambda_2>1 $$ where $\theta_{t_1,t_2} f$ is a non-convolution kernel defined on $\mathbb{R}{m+n}$. In this paper, we showed that the bi-parameter Littlewood-Paley function $g_{\lambda_1,\lambda_2}*$ was bounded from $L2(\R{n+m})$ to $L2(\R{n+m})$. This was done by means of probabilistic methods and by using a new averaging identity over good double Whitney regions.