Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
33 tokens/sec
GPT-5 Medium
31 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
78 tokens/sec
DeepSeek R1 via Azure Premium
92 tokens/sec
GPT OSS 120B via Groq Premium
436 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Fast k-Nearest Neighbour Search via Dynamic Continuous Indexing (1512.00442v3)

Published 1 Dec 2015 in cs.DS, cs.AI, cs.IR, cs.LG, and stat.ML

Abstract: Existing methods for retrieving k-nearest neighbours suffer from the curse of dimensionality. We argue this is caused in part by inherent deficiencies of space partitioning, which is the underlying strategy used by most existing methods. We devise a new strategy that avoids partitioning the vector space and present a novel randomized algorithm that runs in time linear in dimensionality of the space and sub-linear in the intrinsic dimensionality and the size of the dataset and takes space constant in dimensionality of the space and linear in the size of the dataset. The proposed algorithm allows fine-grained control over accuracy and speed on a per-query basis, automatically adapts to variations in data density, supports dynamic updates to the dataset and is easy-to-implement. We show appealing theoretical properties and demonstrate empirically that the proposed algorithm outperforms locality-sensitivity hashing (LSH) in terms of approximation quality, speed and space efficiency.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube