2000 character limit reached
Connectivity of Intersection Graphs of Finite Groups (1512.00361v2)
Published 27 Nov 2015 in math.GR and math.CO
Abstract: The intersection graph of a group $G$ is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of $G$, and there is an edge between two distinct vertices $H$ and $K$ if and only if $H\cap K \neq 1$ where $1$ denotes the trivial subgroup of $G$. In this paper, we classify finite solvable groups whose intersection graphs are not $2$-connected and finite nilpotent groups whose intersection graphs are not $3$-connected. Our methods are elementary.