Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The gradient flow in simple field theories (1512.00294v1)

Published 1 Dec 2015 in hep-lat

Abstract: The gradient flow is a valuable tool for the lattice community, with applications from scale-setting to implementing chiral fermions. Here I focus on the gradient flow as a means to suppress power-divergent mixing. Power-divergent mixing stems from the hypercubic symmetry of the lattice regulator and is a particular difficulty for calculations of, for example, high moments of parton distribution functions. The gradient flow removes power-divergent mixing on the lattice, provided the flow time is kept fixed in physical units, at the expense of introducing a new physical scale in the continuum. One approach to dealing with this new scale is the smeared operator product expansion, a formalism that systematically connects nonperturbative calculations of flowed operators to continuum physics. I study the role of the gradient flow in suppressing power-divergent mixing and present the first nonperturbative study in scalar field theory.

Citations (11)

Summary

We haven't generated a summary for this paper yet.