Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Covariance-domain Dictionary Learning for Overcomplete EEG Source Identification (1512.00156v1)

Published 1 Dec 2015 in cs.IT and math.IT

Abstract: We propose an algorithm targeting the identification of more sources than channels for electroencephalography (EEG). Our overcomplete source identification algorithm, Cov-DL, leverages dictionary learning methods applied in the covariance-domain. Assuming that EEG sources are uncorrelated within moving time-windows and the scalp mixing is linear, the forward problem can be transferred to the covariance domain which has higher dimensionality than the original EEG channel domain. This allows for learning the overcomplete mixing matrix that generates the scalp EEG even when there may be more sources than sensors active at any time segment, i.e. when there are non-sparse sources. This is contrary to straight-forward dictionary learning methods that are based on the assumption of sparsity, which is not a satisfied condition in the case of low-density EEG systems. We present two different learning strategies for Cov-DL, determined by the size of the target mixing matrix. We demonstrate that Cov-DL outperforms existing overcomplete ICA algorithms under various scenarios of EEG simulations and real EEG experiments.

Summary

We haven't generated a summary for this paper yet.