Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The weak-$A_\infty$ property of harmonic and $p$-harmonic measures implies uniform rectifiability (1511.09270v1)

Published 30 Nov 2015 in math.CA and math.AP

Abstract: Let $E\subset \mathbb{R}{n+1}$, $n\ge 2$, be an Ahlfors-David regular set of dimension $n$. We show that the weak-$A_\infty$ property of harmonic measure, for the open set $\Omega:= \mathbb{R}{n+1}\setminus E$, implies uniform rectifiability of $E$. More generally, we establish a similar result for the Riesz measure, $p$-harmonic measure, associated to the $p$-Laplace operator, $1<p<\infty$.

Summary

We haven't generated a summary for this paper yet.