Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stochastic Process Model of Classical Search (1511.08574v1)

Published 27 Nov 2015 in cs.AI

Abstract: Among classical search algorithms with the same heuristic information, with sufficient memory A* is essentially as fast as possible in finding a proven optimal solution. However, in many situations optimal solutions are simply infeasible, and thus search algorithms that trade solution quality for speed are desirable. In this paper, we formalize the process of classical search as a metalevel decision problem, the Abstract Search MDP. For any given optimization criterion, this establishes a well-defined notion of the best possible behaviour for a search algorithm and offers a theoretical approach to the design of algorithms for that criterion. We proceed to approximately solve a version of the Abstract Search MDP for anytime algorithms and thus derive a novel search algorithm, Search by Maximizing the Incremental Rate of Improvement (SMIRI). SMIRI is shown to outperform current state-of-the-art anytime search algorithms on a parametrized stochastic tree model for most of the tested parameter values.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dimitri Klimenko (1 paper)
  2. Hanna Kurniawati (14 papers)
  3. Marcus Gallagher (25 papers)

Summary

We haven't generated a summary for this paper yet.