Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Complexity Analysis of Geometric {\sc Red Blue Set Cover} (1511.07642v2)

Published 24 Nov 2015 in cs.DS

Abstract: We investigate the parameterized complexity of GENERALIZED RED BLUE SET COVER (Gen-RBSC), a generalization of the classic SET COVER problem and the more recently studied RED BLUE SET COVER problem. Given a universe $U$ containing $b$ blue elements and $r$ red elements, positive integers $k_\ell$ and $k_r$, and a family $\F$ of $\ell$ sets over $U$, the \srbsc\ problem is to decide whether there is a subfamily $\F'\subseteq \F$ of size at most $k_\ell$ that covers all blue elements, but at most $k_r$ of the red elements. This generalizes SET COVER and thus in full generality it is intractable in the parameterized setting. In this paper, we study a geometric version of this problem, called Gen-RBSC-lines, where the elements are points in the plane and sets are defined by lines. We study this problem for an array of parameters, namely, $k_\ell, k_r, r, b$, and $\ell$, and all possible combinations of them. For all these cases, we either prove that the problem is W-hard or show that the problem is fixed parameter tractable (FPT). In particular, on the algorithmic side, our study shows that a combination of $k_\ell$ and $k_r$ gives rise to a nontrivial algorithm for Gen-RBSC-lines. On the hardness side, we show that the problem is para-NP-hard when parameterized by $k_r$, and W[1]-hard when parameterized by $k_\ell$. Finally, for the combination of parameters for which Gen-RBSC-lines admits FPT algorithms, we ask for the existence of polynomial kernels. We are able to provide a complete kernelization dichotomy by either showing that the problem admits a polynomial kernel or that it does not contain a polynomial kernel unless $\CoNP \subseteq \NP/\mbox{poly}$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.