Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Ultrametrics on AF Algebras and The Gromov-Hausdorff Propinquity (1511.07114v3)

Published 23 Nov 2015 in math.OA and math.FA

Abstract: We construct quantum metric structures on unital AF algebras with a faithful tracial state, and prove that for such metrics, AF algebras are limits of their defining inductive sequences of finite dimensional C*-algebras for the quantum propinquity. We then study the geometry, for the quantum propinquity, of three natural classes of AF algebras equipped with our quantum metrics: the UHF algebras, the Effros-Shen AF algebras associated with continued fraction expansions of irrationals, and the Cantor space, on which our construction recovers traditional ultrametrics. We also exhibit several compact classes of AF algebras for the quantum propinquity and show continuity of our family of Lip-norms on a fixed AF algebra. Our work thus brings AF algebras into the realm of noncommutative metric geometry.

Summary

We haven't generated a summary for this paper yet.