Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Natural Dynamics for Linear Programming (1511.07020v1)

Published 22 Nov 2015 in cs.DS, math.DS, math.OC, and physics.bio-ph

Abstract: In this paper we study dynamics inspired by Physarum polycephalum (a slime mold) for solving linear programs [NTY00, IJNT11, JZ12]. These dynamics are arrived at by a local and mechanistic interpretation of the inner workings of the slime mold and a global optimization perspective has been lacking even in the simplest of instances. Our first result is an interpretation of the dynamics as an optimization process. We show that Physarum dynamics can be seen as a steepest-descent type algorithm on a certain Riemannian manifold. Moreover, we prove that the trajectories of Physarum are in fact paths of optimizers to a parametrized family of convex programs, in which the objective is a linear cost function regularized by an entropy barrier. Subsequently, we rigorously establish several important properties of solution curves of Physarum. We prove global existence of such solutions and show that they have limits, being optimal solutions of the underlying LP. Finally, we show that the discretization of the Physarum dynamics is efficient for a class of linear programs, which include unimodular constraint matrices. Thus, together, our results shed some light on how nature might be solving instances of perhaps the most complex problem in P: linear programming.

Citations (40)

Summary

We haven't generated a summary for this paper yet.