Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Liouville theorems for stable solutions of the weighted Lane-Emden system (1511.06736v1)

Published 20 Nov 2015 in math.AP

Abstract: We examine the general weighted Lane-Emden system \begin{align*} -\Delta u = \rho(x)vp,\quad -\Delta v= \rho(x)u\theta, \quad u,v>0\quad \mbox{in }\;\mathbb{R}N \end{align*} where $1<p\leq\theta$ and $\rho: \mathbb{R}^N\rightarrow \mathbb{R}$ is a radial continuous function satisfying $\rho(x)\geq A(1+|x|^2)^{\frac{\alpha}{2}}$ in $\mathbb{R}^N$ for some $\alpha\geq 0$ and $A\>0$. We prove some Liouville type results for stable solution and improve the previous works \cite{co, Fa, HU}. In particular, we establish a new comparison property (see Proposition 1.1 below) which is crucial to handle the case $1 < p \leq \frac{4}{3}$. Our results can be applied also to the weighted Lane-Emden equation $-\Delta u = \rho(x)up$ in $\mathbb{R}N$.

Summary

We haven't generated a summary for this paper yet.