Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Use of Eigenvector Centrality to Detect Graph Isomorphism (1511.06620v1)

Published 20 Nov 2015 in cs.SI, cs.DM, and cs.DS

Abstract: Graph Isomorphism is one of the classical problems of graph theory for which no deterministic polynomial-time algorithm is currently known, but has been neither proven to be NP-complete. Several heuristic algorithms have been proposed to determine whether or not two graphs are isomorphic (i.e., structurally the same). In this research, we propose to use the sequence (either the non-decreasing or nonincreasing order) of eigenvector centrality (EVC) values of the vertices of two graphs as a precursor step to decide whether or not to further conduct tests for graph isomorphism. The eigenvector centrality of a vertex in a graph is a measure of the degree of the vertex as well as the degrees of its neighbors. We hypothesize that if the non-increasing (or non-decreasing) order of listings of the EVC values of the vertices of two test graphs are not the same, then the two graphs are not isomorphic. If two test graphs have an identical non-increasing order of the EVC sequence, then they are declared to be potentially isomorphic and confirmed through additional heuristics. We test our hypothesis on random graphs (generated according to the Erdos-Renyi model) and we observe the hypothesis to be indeed true: graph pairs that have the same sequence of non-increasing order of EVC values have been confirmed to be isomorphic using the well-known Nauty software.

Citations (14)

Summary

We haven't generated a summary for this paper yet.