Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Diffusion in Random Network Graphs (1511.06613v1)

Published 20 Nov 2015 in cs.SI and physics.soc-ph

Abstract: In this paper, we consider a random network such that there could be a link between any two nodes in the network with a certain probability (plink). Diffusion is the phenomenon of spreading information throughout the network, starting from one or more initial set of nodes (called the early adopters). Information spreads along the links with a certain probability (pdiff). Diffusion happens in rounds with the first round involving the early adopters. The nodes that receive the information for the first time are said to be covered and become candidates for diffusion in the subsequent round. Diffusion continues until all the nodes in the network have received the information (successful diffusion) or there are no more candidate nodes to spread the information but one or more nodes are yet to receive the information (diffusion failure). On the basis of exhaustive simulations conducted in this paper, we observe that for a given plink and pdiff values, the fraction of successful diffusion attempts does not appreciably change with increase in the number of early adopters; whereas, the average number of rounds per successful diffusion attempt decreases with increase in the number of early adopters. The invariant nature of the fraction of successful diffusion attempts with increase in the number of early adopters for a random network (for fixed plink and pdiff values) is an interesting and noteworthy observation (for further research) and it has not been hitherto reported in the literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.