Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rate of Price Discovery in Iterative Combinatorial Auctions (1511.06017v2)

Published 18 Nov 2015 in cs.GT

Abstract: We study a class of iterative combinatorial auctions which can be viewed as subgradient descent methods for the problem of pricing bundles to balance supply and demand. We provide concrete convergence rates for auctions in this class, bounding the number of auction rounds needed to reach clearing prices. Our analysis allows for a variety of pricing schemes, including item, bundle, and polynomial pricing, and the respective convergence rates confirm that more expressive pricing schemes come at the cost of slower convergence. We consider two models of bidder behavior. In the first model, bidders behave stochastically according to a random utility model, which includes standard best-response bidding as a special case. In the second model, bidders behave arbitrarily (even adversarially), and meaningful convergence relies on properly designed activity rules.

Citations (3)

Summary

We haven't generated a summary for this paper yet.