Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternative Markov and Causal Properties for Acyclic Directed Mixed Graphs (1511.05835v4)

Published 18 Nov 2015 in stat.ML and cs.AI

Abstract: We extend Andersson-Madigan-Perlman chain graphs by (i) relaxing the semidirected acyclity constraint so that only directed cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. We introduce global, and ordered local and pairwise Markov properties for the new models. We show the equivalence of these properties for strictly positive probability distributions. We also show that when the random variables are continuous, the new models can be interpreted as systems of structural equations with correlated errors. This enables us to adapt Pearl's do-calculus to them. Finally, we describe an exact algorithm for learning the new models from observational and interventional data via answer set programming.

Citations (23)

Summary

We haven't generated a summary for this paper yet.