Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering Underlying Plans Based on Distributed Representations of Actions (1511.05662v1)

Published 18 Nov 2015 in cs.AI

Abstract: Plan recognition aims to discover target plans (i.e., sequences of actions) behind observed actions, with history plan libraries or domain models in hand. Previous approaches either discover plans by maximally "matching" observed actions to plan libraries, assuming target plans are from plan libraries, or infer plans by executing domain models to best explain the observed actions, assuming complete domain models are available. In real world applications, however, target plans are often not from plan libraries and complete domain models are often not available, since building complete sets of plans and complete domain models are often difficult or expensive. In this paper we view plan libraries as corpora and learn vector representations of actions using the corpora; we then discover target plans based on the vector representations. Our approach is capable of discovering underlying plans that are not from plan libraries, without requiring domain models provided. We empirically demonstrate the effectiveness of our approach by comparing its performance to traditional plan recognition approaches in three planning domains.

Citations (27)

Summary

We haven't generated a summary for this paper yet.