Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recurrent Neural Networks Hardware Implementation on FPGA (1511.05552v4)

Published 17 Nov 2015 in cs.NE

Abstract: Recurrent Neural Networks (RNNs) have the ability to retain memory and learn data sequences. Due to the recurrent nature of RNNs, it is sometimes hard to parallelize all its computations on conventional hardware. CPUs do not currently offer large parallelism, while GPUs offer limited parallelism due to sequential components of RNN models. In this paper we present a hardware implementation of Long-Short Term Memory (LSTM) recurrent network on the programmable logic Zynq 7020 FPGA from Xilinx. We implemented a RNN with $2$ layers and $128$ hidden units in hardware and it has been tested using a character level LLM. The implementation is more than $21\times$ faster than the ARM CPU embedded on the Zynq 7020 FPGA. This work can potentially evolve to a RNN co-processor for future mobile devices.

Citations (122)

Summary

We haven't generated a summary for this paper yet.