Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Classification of Pointed Fusion Categories up to weak Morita Equivalence (1511.05522v2)

Published 17 Nov 2015 in math.AT and math.QA

Abstract: A pointed fusion category is a rigid tensor category with finitely many isomorphism classes of simple objects which moreover are invertible. Two tensor categories $C$ and $D$ are weakly Morita equivalent if there exists an indecomposable right module category $M$ over $C$ such that $Fun_C(M,M)$ and $D$ are tensor equivalent. We use the Lyndon-Hochschild-Serre spectral sequence associated to abelian group extensions to give necessary and sufficient conditions in terms of cohomology classes for two pointed fusion categories to be weakly Morita equivalent. This result may permit to classify the equivalence classes of pointed fusion categories of any given global dimension.

Summary

We haven't generated a summary for this paper yet.