Wave Operators and Similarity for Long Range $N$-body Schrödinger Operators (1511.05137v2)
Abstract: We consider asymptotic behavior of $e{-itH}f$ for $N$-body Schr\"odinger operator $H=H_0+\sum_{1\le i<j\le N}V_{ij}(x)$ with long- and short-range pair potentials $V_{ij}(x)=V_{ij}^L(x)+V_{ij}^S(x)$ $(x\in {\mathbb R}^\nu)$ such that $\partial_x^\alpha V_{ij}^L(x)=O(|x|^{-\delta-|\alpha|})$ and $V_{ij}^S(x)=O(|x|^{-1-\delta})$ $(|x|\to\infty)$ with $\delta\>0$. Introducing the concept of scattering spaces which classify the initial states $f$ according to the asymptotic behavior of the evolution $e{-itH}f$, we give a generalized decomposition theorem of the continuous spectral subspace ${\mathcal{H}}_c(H)$ of $H$. The asymptotic completeness of wave operators is proved for some long-range pair potentials with $\delta>1/2$ by using this decomposition theorem under some assumption on subsystem eigenfunctions.