Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operational Interpretation of Renyi Information Measures via Composite Hypothesis Testing Against Product and Markov Distributions (1511.04874v3)

Published 16 Nov 2015 in cs.IT, math.IT, and quant-ph

Abstract: We revisit the problem of asymmetric binary hypothesis testing against a composite alternative hypothesis. We introduce a general framework to treat such problems when the alternative hypothesis adheres to certain axioms. In this case we find the threshold rate, the optimal error and strong converse exponents (at large deviations from the threshold) and the second order asymptotics (at small deviations from the threshold). We apply our results to find operational interpretations of various Renyi information measures. In case the alternative hypothesis is comprised of bipartite product distributions, we find that the optimal error and strong converse exponents are determined by variations of Renyi mutual information. In case the alternative hypothesis consists of tripartite distributions satisfying the Markov property, we find that the optimal exponents are determined by variations of Renyi conditional mutual information. In either case the relevant notion of Renyi mutual information depends on the precise choice of the alternative hypothesis. As such, our work also strengthens the view that different definitions of Renyi mutual information, conditional entropy and conditional mutual information are adequate depending on the context in which the measures are used.

Citations (52)

Summary

We haven't generated a summary for this paper yet.