Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementation and comparative quantitative assessment of different multispectral image pansharpening approches (1511.04659v1)

Published 15 Nov 2015 in cs.CV

Abstract: In remote sensing, images acquired by various earth observation satellites tend to have either a high spatial and low spectral resolution or vice versa. Pansharpening is a technique which aims to improve spatial resolution of multispectral image. The challenges involve in the pansharpening are not only to improve the spatial resolution but also to preserve spectral quality of the multispectral image. In this paper, various pansharpening algorithms are discussed and classified based on approaches they have adopted. Using MATLAB image processing toolbox, several state-of-art pan-sharpening algorithms are implemented. Quality of pansharpened images are assessed visually and quantitatively. Correlation coefficient (CC), Root mean square error (RMSE), Relative average spectral error (RASE) and Universal quality index (Q) indices are used to easure spectral quality while to spatial-CC (SCC) quantitative parameter is used for spatial quality measurement. Finally, the paper is concluded with useful remarks.

Citations (13)

Summary

We haven't generated a summary for this paper yet.