Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods (1511.04400v3)

Published 13 Nov 2015 in math.NA

Abstract: This work presents a comprehensive discretization theory for abstract linear operator equations in Banach spaces. The fundamental starting point of the theory is the idea of residual minimization in dual norms, and its inexact version using discrete dual norms. It is shown that this development, in the case of strictly-convex reflexive Banach spaces with strictly-convex dual, gives rise to a class of nonlinear Petrov-Galerkin methods and, equivalently, abstract mixed methods with monotone nonlinearity. Crucial in the formulation of these methods is the (nonlinear) bijective duality map. Under the Fortin condition, we prove discrete stability of the abstract inexact method, and subsequently carry out a complete error analysis. As part of our analysis, we prove new bounds for best-approximation projectors, which involve constants depending on the geometry of the underlying Banach space. The theory generalizes and extends the classical Petrov-Galerkin method as well as existing residual-minimization approaches, such as the discontinuous Petrov-Galerkin method.

Summary

We haven't generated a summary for this paper yet.