Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$k$-means: Fighting against Degeneracy in Sequential Monte Carlo with an Application to Tracking (1511.04157v1)

Published 13 Nov 2015 in stat.ML

Abstract: For regular particle filter algorithm or Sequential Monte Carlo (SMC) methods, the initial weights are traditionally dependent on the proposed distribution, the posterior distribution at the current timestamp in the sampled sequence, and the target is the posterior distribution of the previous timestamp. This is technically correct, but leads to algorithms which usually have practical issues with degeneracy, where all particles eventually collapse onto a single particle. In this paper, we propose and evaluate using $k$ means clustering to attack and even take advantage of this degeneracy. Specifically, we propose a Stochastic SMC algorithm which initializes the set of $k$ means, providing the initial centers chosen from the collapsed particles. To fight against degeneracy, we adjust the regular SMC weights, mediated by cluster proportions, and then correct them to retain the same expectation as before. We experimentally demonstrate that our approach has better performance than vanilla algorithms.

Summary

We haven't generated a summary for this paper yet.