Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Penetration Depth Computation between Rigid Models using Contact Space Propagation Sampling (1511.03999v2)

Published 12 Nov 2015 in cs.RO

Abstract: We present a novel method to compute the approximate global penetration depth (PD) between two non-convex geometric models. Our approach consists of two phases: offline precomputation and run-time queries. In the first phase, our formulation uses a novel sampling algorithm to precompute an approximation of the high-dimensional contact space between the pair of models. As compared with prior random sampling algorithms for contact space approximation, our propagation sampling considerably speeds up the precomputation and yields a high quality approximation. At run-time, we perform a nearest-neighbor query and local projection to efficiently compute the translational or generalized PD. We demonstrate the performance of our approach on complex 3D benchmarks with tens or hundreds of thousands of triangles, and we observe significant improvement over previous methods in terms of accuracy, with a modest improvement in the run-time performance.

Citations (7)

Summary

We haven't generated a summary for this paper yet.