Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smoothing parameter and model selection for general smooth models (1511.03864v2)

Published 12 Nov 2015 in stat.ME

Abstract: This paper discusses a general framework for smoothing parameter estimation for models with regular likelihoods constructed in terms of unknown smooth functions of covariates. Gaussian random effects and parametric terms may also be present. By construction the method is numerically stable and convergent, and enables smoothing parameter uncertainty to be quantified. The latter enables us to fix a well known problem with AIC for such models. The smooth functions are represented by reduced rank spline like smoothers, with associated quadratic penalties measuring function smoothness. Model estimation is by penalized likelihood maximization, where the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate marginal likelihood. The methods cover, for example, generalized additive models for non-exponential family responses (for example beta, ordered categorical, scaled t distribution, negative binomial and Tweedie distributions), generalized additive models for location scale and shape (for example two stage zero inflation models, and Gaussian location-scale models), Cox proportional hazards models and multivariate additive models. The framework reduces the implementation of new model classes to the coding of some standard derivatives of the log likelihood.

Summary

We haven't generated a summary for this paper yet.