Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Action Recognition based on Incremental Learning of Weighted Covariance Descriptors (1511.03028v4)

Published 10 Nov 2015 in cs.CV

Abstract: Different from traditional action recognition based on video segments, online action recognition aims to recognize actions from unsegmented streams of data in a continuous manner. One way for online recognition is based on the evidence accumulation over time to make predictions from stream videos. This paper presents a fast yet effective method to recognize actions from stream of noisy skeleton data, and a novel weighted covariance descriptor is adopted to accumulate evidence. In particular, a fast incremental updating method for the weighted covariance descriptor is developed for accumulation of temporal information and online prediction. The weighted covariance descriptor takes the following principles into consideration: past frames have less contribution for recognition and recent and informative frames such as key frames contribute more to the recognition. The online recognition is achieved using a simple nearest neighbor search against a set of offline trained action models. Experimental results on MSC-12 Kinect Gesture dataset and our newly constructed online action recognition dataset have demonstrated the efficacy of the proposed method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.