Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Escaping points in the boundaries of Baker domains (1511.02897v1)

Published 9 Nov 2015 in math.DS

Abstract: We study the dynamical behaviour of points in the boundaries of simply connected invariant Baker domains $U$ of meromorphic maps $f$ with a finite degree on $U$. We prove that if $f|_U$ is of hyperbolic or simply parabolic type, then almost every point in the boundary of $U$ with respect to harmonic measure escapes to infinity under iteration. On the contrary, if $f|_U$ is of doubly parabolic type, then almost every point in the boundary of $U$ with respect to harmonic measure has dense forward trajectory in the boundary of $U$, in particular the set of escaping points in the boundary of $U$ has harmonic measure zero. We also present some extensions of the results to the case when $f$ has infinite degree on $U$, including classical Fatou example.

Summary

We haven't generated a summary for this paper yet.