Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MUSIC for multidimensional spectral estimation: stability and super-resolution (1511.02727v1)

Published 9 Nov 2015 in cs.IT, math.IT, and math.NA

Abstract: This paper presents a performance analysis of the MUltiple SIgnal Classification (MUSIC) algorithm applied on $D$ dimensional single-snapshot spectral estimation while $s$ true frequencies are located on the continuum of a bounded domain. Inspired by the matrix pencil form, we construct a D-fold Hankel matrix from the measurements and exploit its Vandermonde decomposition in the noiseless case. MUSIC amounts to identifying a noise subspace, evaluating a noise-space correlation function, and localizing frequencies by searching the $s$ smallest local minima of the noise-space correlation function. In the noiseless case, $(2s)D$ measurements guarantee an exact reconstruction by MUSIC as the noise-space correlation function vanishes exactly at true frequencies. When noise exists, we provide an explicit estimate on the perturbation of the noise-space correlation function in terms of noise level, dimension $D$, the minimum separation among frequencies, the maximum and minimum amplitudes while frequencies are separated by two Rayleigh Length (RL) at each direction. As a by-product the maximum and minimum non-zero singular values of the multidimensional Vandermonde matrix whose nodes are on the unit sphere are estimated under a gap condition of the nodes. Under the 2-RL separation condition, if noise is i.i.d. gaussian, we show that perturbation of the noise-space correlation function decays like $\sqrt{\log(#(\mathbf{N}))/#(\mathbf{N})}$ as the sample size $#(\mathbf{N})$ increases. When the separation among frequencies drops below 2 RL, our numerical experiments show that the noise tolerance of MUSIC obeys a power law with the minimum separation of frequencies.

Citations (57)

Summary

We haven't generated a summary for this paper yet.