Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Construction of Linear Codes over $\f_{2^t}$ from Boolean Functions (1511.02264v1)

Published 6 Nov 2015 in cs.IT and math.IT

Abstract: In this paper, we present a construction of linear codes over $\f_{2t}$ from Boolean functions, which is a generalization of Ding's method \cite[Theorem 9]{Ding15}. Based on this construction, we give two classes of linear codes $\tilde{\C}{f}$ and $\C_f$ (see Theorem \ref{thm-maincode1} and Theorem \ref{thm-maincodenew}) over $\f{2t}$ from a Boolean function $f:\f_{q}\rightarrow \f_2$, where $q=2n$ and $\f_{2t}$ is some subfield of $\f_{q}$. The complete weight enumerator of $\tilde{\C}{f}$ can be easily determined from the Walsh spectrum of $f$, while the weight distribution of the code $\C_f$ can also be easily settled. Particularly, the number of nonzero weights of $\tilde{\C}{f}$ and $\C_f$ is the same as the number of distinct Walsh values of $f$. As applications of this construction, we show several series of linear codes over $\f_{2t}$ with two or three weights by using bent, semibent, monomial and quadratic Boolean function $f$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.