Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Efficient Resource Allocation for Control Data Separation Architecture based H-CRAN with Heterogeneous Fronthaul (1511.01969v2)

Published 6 Nov 2015 in cs.IT and math.IT

Abstract: Control data separation architecture (CDSA) is a more efficient architecture to overcome the overhead issue than the conventional cellular networks, especially for the huge bursty traffic like Internet of Things, and over-the-top (OTT) content service. In this paper, we study the optimization issue of network energy efficiency of the CDSA-based heterogeneous cloud radio access networks (H-CRAN) networks, which has heterogeneous fronthaul between control base station (CBS) and data base stations (DBSs). We first present a modified power consumption model for the CDSA-based H-CRAN, and then formulate the optimization problem with constraint of overall capacity of wireless fronthaul. We work out the resource assignment and power allocation by the convex relaxation approach Using fractional programming method and Lagrangian dual decomposition method, we derive the close-form optimal solution and verify it by comprehensive system-level simulation. The simulation results show that our proposed algorithm has 8% EE gain compared to the static algorithm, and the CDSA-based H-CRAN networks can achieve up to 16% EE gain compared to the conventional network even under strict fronthaul capacity limit.

Citations (2)

Summary

We haven't generated a summary for this paper yet.