Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstraction Refinement Guided by a Learnt Probabilistic Model (1511.01874v2)

Published 5 Nov 2015 in cs.PL and cs.SE

Abstract: The core challenge in designing an effective static program analysis is to find a good program abstraction -- one that retains only details relevant to a given query. In this paper, we present a new approach for automatically finding such an abstraction. Our approach uses a pessimistic strategy, which can optionally use guidance from a probabilistic model. Our approach applies to parametric static analyses implemented in Datalog, and is based on counterexample-guided abstraction refinement. For each untried abstraction, our probabilistic model provides a probability of success, while the size of the abstraction provides an estimate of its cost in terms of analysis time. Combining these two metrics, probability and cost, our refinement algorithm picks an optimal abstraction. Our probabilistic model is a variant of the Erdos-Renyi random graph model, and it is tunable by what we call hyperparameters. We present a method to learn good values for these hyperparameters, by observing past runs of the analysis on an existing codebase. We evaluate our approach on an object sensitive pointer analysis for Java programs, with two client analyses (PolySite and Downcast).

Citations (26)

Summary

We haven't generated a summary for this paper yet.