Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Abstract Model for Branching and its Application to Mixed Integer Programming (1511.01818v3)

Published 5 Nov 2015 in math.OC and cs.DS

Abstract: The selection of branching variables is a key component of branch-and-bound algorithms for solving Mixed-Integer Programming (MIP) problems since the quality of the selection procedure is likely to have a significant effect on the size of the enumeration tree. State-of-the-art procedures base the selection of variables on their "LP gains", which is the dual bound improvement obtained after branching on a variable. There are various ways of selecting variables depending on their LP gains. However, all methods are evaluated empirically. In this paper we present a theoretical model for the selection of branching variables. It is based upon an abstraction of MIPs to a simpler setting in which it is possible to analytically evaluate the dual bound improvement of choosing a given variable. We then discuss how the analytical results can be used to choose branching variables for MIPs, and we give experimental results that demonstrate the effectiveness of the method on MIPLIB 2010 "tree" instances where we achieve a 5% geometric average time and node improvement over the default rule of SCIP, a state-of-the-art MIP solver.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Pierre Le Bodic (14 papers)
  2. George L. Nemhauser (1 paper)
Citations (32)

Summary

We haven't generated a summary for this paper yet.